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Abstract

This paper deals with the acoustic field scattered by elastic bodies in motion. Starting from the Ffowcs Williams and

Hawkings equation for porous surfaces, a boundary integral formulation for the acoustic disturbance is derived. For

moving, vibrating bodies impinged by acoustic waves it yields a unified approach for the determination of surface pressure

perturbations and sound radiation. The scattered field is determined from the knowledge of the impinging pressure,

without requiring the evaluation of its normal derivative over the surface of the scatterer. A boundary element method is

applied for the numerical solution of the integral formulation. The resulting prediction tool is validated through acoustic

analysis of stationary rigid and elastic spherical shells, as well as a wing and a vibrating sphere in uniform motion. The

advantages of the proposed sound scattering formulation are discussed.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The aim of this work is to evaluate the acoustic field generated by pressure waves scattered by moving,
elastic bodies. The problem of sound scattering is present in a wide range of engineering applications dealing
with steady and moving objects. In aeronautics, for instance, the evaluation of scattered acoustic fields is of
interest both for the evaluation of overall noise emitted by moving aircraft and for the prediction of fuselage
wall vibrations that, in turn, are a source of cabin noise (aeroacoustoelastic application). The decomposition
of the noise field into incident and scattered components is useful when, within the limits of the required
accuracy, the source of the incident field may be considered independent of the presence of the scattering
surface. Indeed, in aeronautical applications where the main source of noise is an aircraft component that may
be assumed to be aerodynamically independent, first the incident pressure field may be determined through an
aerodynamic/aeroacoustic analysis of it, and then the rest of the aircraft configuration (the scattering portion)
may be taken into account in the second step of the process dealing with the scattered field. For instance, this
approach is applicable in the analysis of propeller-driven aircraft where the noise emitted by the propellers is
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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scattered by the fuselage [1]. However, a similar acoustic analysis may also be applied to those rotorcraft
configurations where the rotating blades are the main source of noise, with the major contribution of the
fuselage to the noise field being represented by its scattering effect (some helicopter flight configurations fall
within this category) [2].

The analysis of noise scattering involves pressure waves impinging both on non-moving and on moving
surfaces. A wide literature is available on this subject (see, for instance, Refs. [3–12]). It includes works dealing
with the discussion of techniques for the regularization of the scattered field that is needed when fictitious
eigenfrequencies appear in the integral operator governing the problem (see, for instance, Ref. [4] for a review
on this issue).

Here, the pressure field scattered by an elastic moving body is analyzed through a boundary integral
formulation based on the Ffowcs Williams and Hawkings (FW-H) equation [13]. This formulation, that
extends and improves the one presented in Ref. [14], yields a unified solver that is not only able to radiate the
sound, but can also be used to evaluate the acoustic disturbance over moving, vibrating surfaces. It may be
conveniently applied to acoustoelastic problems where body elastic vibrations interact with the exterior
pressure field and generate noise within its cavity (if any). For aeronautical applications, sound radiation
prediction tools derived from the FW-H equation have been proven to be very efficient. They are able to
evaluate both the noise due to the pressure distribution over the body (loading noise) and that given by air
perturbation produced by the body motion (thickness noise). The analysis of sound scattering is not a
standard field of application of the FW-H equation, and this issue has recently been discussed in some papers
[15–18]. However, it is shown that the resulting boundary integral formulation derived from it is able to
predict near-field and far-field scattered solutions, also showing some advantages in terms of numerical
application simplicity. In particular, the scattered field is obtained from the knowledge of the incident field
over the surfaces of the scatterers, instead of requiring the evaluation of its normal derivative, as it is in widely
used integral approaches for sound scattering analysis (like, for instance, those based on the Kirchhoff integral
operator).

The acoustic formulation introduced is validated by comparisons with analytical solutions for rigid and
elastic spheres impinged by plane pressure waves. Problems of sound scattered by a wing in uniform rectilinear
motion and of sound generated by a vibrating moving sphere are also examined.
2. A boundary integral formulation for the acoustic disturbance from porous surfaces

Prediction tools based on the FW-H equation [13] have been proven to be very efficient aeroacoustic solvers
in aeronautical subsonic and supersonic configurations, where the sound generated aerodynamically plays a
significant role. Here, the FW-H equation is applied for the development of a methodology aimed at the
analysis of sound scattered by elastic vibrating surfaces. This approach is outlined in the next sections and is
based on the boundary integral formulation for the solution of the FW-H equation described in the following.

Let us assume that the fluid is compressible and undergoes transformations with negligible entropy changes.
If N bodies move in the fluid, each having velocity vj in a frame of reference fixed to the undisturbed medium
(air frame), and a permeable (porous) boundary surface Sj defined by those points that satisfy f jðx; tÞ ¼ 0, the
following form of the FW-H equation [13] can be obtained (see also Refs. [19,20]):

&2p0 ¼
XN

j

q
qt
½r0vj � rf jdðf jÞ� þ

q
qt
½rðu� vjÞ � rf jdðf jÞ�

�
XN

j

r � ½Prf jdðf jÞ� �
XN

j

r � ½ruðu� vjÞ � rf jdðf jÞ�

þ r � r � T
YN

j

Hðf jÞ

" #( )
; 8x 2 R3, (1)

where p0 ¼ c2r̂ is the acoustic disturbance, with r̂ ¼ ðr� r0Þ representing the density perturbation and c and
r0 denoting, respectively, the speed of sound and the density of the undisturbed medium. The bars denote
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generalized differential operators and &2 ¼ ð1=c2Þðq
2
=qt2Þ � r

2
is the generalized wave operator. In addition,

P ¼ ðp� p0ÞI ¼ p̂I and T ¼ ru� uþ ðp̂� c2r̂ÞI denote, respectively, the compressive stress tensor and the
Lighthill tensor, u is the fluid velocity in the air frame of reference, whereas H and d are Heaviside and Dirac
delta functions. The two terms where the difference ðu� vjÞ between the fluid and the surface velocity appears
are those arising only in case of porous boundary surfaces.

Following the theoretical approach introduced in Ref. [21] and extended to more complex subsonic
aeronautical configurations in Ref. [22], assuming the nonlinear perturbation field terms to be negligible and
the body surfaces to be rigid, for f j such that jrf jj ¼ 1, the boundary integral representation of the acoustic
field governed by Eq. (1) is given by

p0ðx; tÞ ¼ �
XN

j

Z
Sj

r0½v � nv � rĜ þ ½v � nð1� v � ryÞ�_Ĝ�ret dS

�
XN

j

Z
Sj

½ðPnÞ � rĜ � ð _PnÞ � ryĜ�ret dS

�
XN

j

Z
Sj

½ru� � nuþ � rĜ þ ½ru� � nð1� uþ � ryÞ�_Ĝ�ret dS, (2)

where each moving surface is defined in a Lagrangean frame, g, fixed to the surface (i.e., the integrations are
performed over time-independent surfaces). In the equation above, u� ¼ ðu� vÞ; uþ ¼ ðuþ vÞ, n denotes the
outward unit normal on Sj, whereas

Ĝðx; g; tÞ ¼
�1

4p
1

rð1�MrÞ

� �
ret

,

where, for ðx; tÞ and ðy; tÞ representing, respectively, observer and source space–time variables in the air frame,
r ¼ jrj ¼ jx� yðg; tÞj, while ð1�MrÞ is the Doppler factor with Mr ¼ v � ðr=rÞ=c denoting the surface velocity
Mach number in the direction of radiation. In addition, the symbol _ð Þ denotes the time derivative keeping
fixed a surface point, whereas the symbol ½ �ret indicates that the quantities must be evaluated at the retarded
emission time, te ¼ t� y, where y is the time taken by an acoustic disturbance released from a surface source
point, g, to reach the observer location, x, at current time, t. The time delay, y, is evaluated as root of the
equation jx� yðg; t� yÞj=c� y ¼ 0. Note that the integrands appearing in Eq. (2) have to be interpreted
carefully. In particular, when for computational application the analytical gradients of Ĝ and y are carried
out, attention has to be paid to the variables they depend on (see, for instance, Refs. [21–24] where some
critical issues concerning this kind of integral formulations are discussed).

Integral representations of the solution of the FW-H equation of the type in Eq. (2) are commonly applied
in aeroacoustics to compute the noise radiated by moving impermeable bodies (u� � n ¼ 0), once the pressure
distributions over their boundary surfaces are known from an aerodynamic solver. As already mentioned
above, here the intended application of Eq. (2) is to derive an integral equation to compute the pressure
perturbation over vibrating surfaces impinged by pressure waves and the corresponding noise radiated (elastic
body scattering). It is possible to demonstrate that, under the body impermeability assumption, the integral
formulation in Eq. (2) is exactly equivalent to Farassat’s Formulation 1A [24–26], with the first integral
representing the thickness noise and the second one the loading noise. The third integral takes into account the
modifications to the acoustic radiation from moving bodies due to surface porosity effects.

The extension of the integral formulation presented above to deformable bodies may be achieved following
the approach presented in Refs. [27,23].
3. Acoustic disturbance in the presence of impinging pressure waves

The analysis of the noise radiated by bodies that are impinged by pressure waves is of interest in many
acoustic applications, with inclusion of environmental noise detection. It concerns acoustic configurations
where a noise source distribution radiates a pressure disturbance (incident) field that, interacting with moving
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or stationary bodies, is subject to modifications in directivity and intensity (scattering effects). An essential
feature of this kind of problems is that the noise source is assumed to be independent of the presence of
scatterers.

Thus, in order to analyze the problem of pressure waves impinging on moving bodies through the
formulation in Section 2, let us assume that two surfaces are present in the domain of interest: one, SB, is the
boundary of an arbitrarily moving scattering body, whereas the second, SI , is a closed surface that surrounds
the sources of an incident acoustic disturbance. The limitation of the analysis to one single scattering body is
for the sake of simplicity, and does not affect the generality of the formulation that will be developed. The
surface SI is a virtual, arbitrarily shaped surface that is perfectly permeable and does not alter the flow field (it
is introduced only to derive the integral formulation for the scattered field). The only constraint in its choice is
that it must be close enough to the sources of the pressure disturbances (moving with them, if necessary) in
such a way that the flow field over it is unaffected by the presence of the scattering body. Under these
assumptions, noting that acoustic disturbance and pressure perturbation coincide under the hypothesis of
small perturbation fields, the incident pressure distribution, p0I , may be expressed by the following integral
representation for x outside SI [Eq. (2) written for ‘frozen’ noise sources]:

p0I ðx; tÞ ¼ �

Z
SI

r0½v � nv � rĜ þ ½v � nð1� v � ryÞ�_Ĝ�ret dS

�

Z
SI

½p0In � rĜ � _p0In � ryĜ�ret dS

�

Z
SI

½ru�I � nu
þ
I � rĜ þ ½ru�I � nð1� uþI � ryÞ�_Ĝ�ret dS, (3)

where the porosity effects are due to the velocity field, uI , related to the incident pressure. Then, decomposing
the total acoustic disturbance field into the incident component and the component, p0B, due to the body
presence (i.e., for p0 ¼ p0B þ p0I ), the combination of Eq. (2) for x outside SB (and SI ) with Eq. (3) yields the
following boundary integral representation for the acoustic disturbance due to the body impinged by the
incident pressure wave

p0Bðx; tÞ ¼ �
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Z
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�

Z
SB
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This equation may be applied to determine the noise radiated by the body once p0B is evaluated over its surface.
For this purpose, the equation above may be written for x 2 SB, thus yielding the following boundary integral
equation:
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where vn ¼ v � n, u�n ¼ u� � n, uþn ¼ uþ � n and l ¼ 0:5=ð1�M2
nÞ, with Mn ¼ vn=c. Eq. (5) is a boundary integral

equation through which p0B may be determined on SB from the knowledge of incident pressure field, motion of
the body and porosity effects. The additional terms related to the coefficient l that are evaluated at the
observer position come from the singularities of the kernel function, rĜ, arising for x 2 SB (see Appendix A
for details on their derivation and on the corresponding interpretation of the integrals over SB); some of these
terms coincide with those introduced by Long [28] for aerodynamic applications of Formulation 1A by
Farassat.

The acoustic formulation represented by Eqs. (4) and (5) yields the sound radiated by the body with the only
requirement of knowing incident pressure field, body motion and the nature of porosity contributions
(usually of small perturbation type and related to body surface characteristics). In the presence of multiple
bodies, this formulation, when extended to the whole set of bodies, is able to also capture the interactional
effects. An acoustics approach of this type could be of interest, for instance, in the prediction of the noise
produced by those aeronautical multibody configurations where, within the limits of the required accuracy, it
is possible to identify one single body as the main noise source, with the pressure on it approximately
independent of the presence of the other bodies. Indeed, in this case, the only aerodynamic input required
would be that related to the pressure solution on the isolated noise source body to be used in Eq. (3) for the
determination of the incident pressure field (propeller-driven aircraft could be an example of such aeronautical
configurations).
4. Sound radiated by scattering and vibrating surfaces

Observing Eqs. (4) and (5), it is evident that the pressure field over an arbitrarily moving body, along with
the noise it radiates, is the result of the action of three forcing terms: one is related to the rigid-body motion,
one is related to the impinging pressure wave and one is related to the surface porosity.

The formulation presented above is not intended for the prediction of pressure perturbation generated by
rigid-body motion (neither for lifting nor for non-lifting configurations). Pressure perturbations over
arbitrarily shaped bodies that are caused by rigid-body motion usually correspond to non-small velocity
perturbations, and thus their accurate evaluation would require the inclusion of the contribution from the
Lighthill tensor in Eq. (1) (see, for instance, Refs. [29,30] for the analysis of the quadrupole terms). This
problem does not occur in the standard aeroacoustics since the pressure over the surface is obtained from an
aerodynamic solver and the inaccuracy mentioned above disappears when the acoustic disturbance is
evaluated at points that are far from the emitting surface (see the quadrupole expression in Refs. [29,30]). In
addition, note that in many sound-scattering applications, if not stationary, the scatterer motion is a uniform
translation that yields a constant pressure field over the body surface and does not produce any noise
disturbance at points located in a frame of reference fixed with it.

The present formulation is aimed at the prediction of the acoustic disturbance generated by elastic shells
when impinged by pressure waves, i.e., due to pressure perturbations from scattering and surface vibration
effects. Surface vibration effects may be simulated as surface porosity contributions. Indeed, because of body
impenetrability, surface vibrations produce a difference between the normal component of the rigid-body
velocity and that of the fluid flow, and it corresponds exactly to the ‘elastic transpiration velocity’ term
w ¼ u� � n � ðu� vÞ � n which represents surface porosity effects in Eqs. (1), (4) and (5). Note that this is the
only way to include theoretically the influence of wall vibrations in an integral formulation that has been
derived under the assumption of rigid surfaces, without arbitrarily introducing approximated effects related to
(not compatible) surface deformations.

Then, let us decompose the pressure perturbation field into a component due to the rigid-body motion, p0R,
and a scattering component, p0S, due to incident pressure and surface vibrations, such that p0B ¼ p0R þ p0S.
Because of the linearity of the integral operator introduced above, it is possible to derive an integral equation
for p0R forced by the terms involving the rigid-body motion velocity (thickness-noise terms), and an integral
equation for p0S forced by incident pressure and surface vibrations. In particular, assuming that the elastic
transpiration velocity is a small-perturbation term and discarding the second-order perturbation terms from
the surface porosity contribution, Eq. (5) yields the following boundary integral equation for the sound
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scattered by a moving, vibrating surface:

½1� lðx; tÞ�p0Sðx; tÞ ¼ lðx; tÞ½p0I ðx; tÞ þ 2r0vnwðx; tÞ�

�

Z
SB

½p0Sn � rĜ � _p0Sn � ryĜ�ret dS

�

Z
SB

½p0In � rĜ � _p0In � ryĜ�ret dS

�

Z
SB

r0½wðu0 þ vÞ � rĜ þ ½wð1� ðu0 þ vÞ � ryÞ�_Ĝ�ret dS, (6)

where u0 is the fluid velocity over the unperturbed body (note that u0 � n ¼ v � n in the unperturbed, nonvibrating,
impermeable body configuration). This boundary integral equation yields the scattered pressure from the
knowledge of the incident pressure over the surface and surface elastic vibrations. Once p0S is known on the body
surface, the corresponding integral representation derived from Eq. (4) may be applied to determine p0S in the field.
Note that, although the rigid-body motion pressure perturbation, p0R, is not present in this formulation (as
motivated above), the effects of rigid-body oscillations (if any) can always be taken into account through the
transpiration velocity term. The inclusion of the vibrational effects allows the application of the acoustic
formulation presented in acoustoelastic problems where wall vibrations transmit exterior pressure disturbances
within the cavity bounded by the deforming wall (typical aircraft cabin noise production mechanism). The acoustic
formulation presented is a simplification with respect to widely used scattering formulations that require
knowledge of the normal derivative of the incident pressure over the scatterer surface. It is either directly applied as
a boundary condition (formulations based on the Kirchhoff integral operator), or used to determine the normal
acoustic velocity appearing in the impenetrability surface condition. Indeed, whenever the incident pressure field is
the result of complex acoustic radiation processes (like, for instance, those occurring in aeronautical problems
involving helicopter rotors and propellers), the numerical evaluation of the pressure gradient may become
computationally expensive in terms of run time and memory use and introduce further approximation in the
algorithm of solution. Recently, some authors have developed a boundary integral formulation for the
computationally efficient evaluation of the pressure gradient, starting from Farassat’s Formulation 1A [31].

Scattering, vibroacoustic problems are usually analyzed in the frequency domain, where the acoustic field is
evaluated for each harmonic of the incident wave pressure and of the vibrating motion. Because of the
linearity of Eq. (6), if the body velocity has constant components in a body-fixed frame of reference so that all
terms are time independent (of course, with the exception of p0I ; p

0
S and w), then it is possible to transform it in

the frequency domain. For p0ðx; tÞ ¼ ~p0ðx;oÞ eiot and wðx; tÞ ¼ ~wðx;oÞ eiot this yields

½1� lðxÞ� ~p0Sðx; kÞ ¼ lðxÞ½ ~p0I ðx; kÞ þ 2r0cMn ~wðx; kÞ�

�

Z
SB

½n � rĜ � ikn � rsĜ� ~p0Sðy; kÞ e
�iks dS

�

Z
SB

½n � rĜ � ikn � rsĜ� ~p0I ðy; kÞ e
�iks dS

�

Z
SB

r0c½M̂ � rĜ þ ikð1� M̂ � rsÞĜ�~wðy; kÞ e�iks dS, (7)

where k ¼ o=c is the wave number, s ¼ cy, Mn ¼ vn=c and M̂ ¼ ðu0 þ vÞ=c.
Once the pressure over the scattering, vibrating surface has been evaluated by Eq. (7), the following

boundary integral representation gives the corresponding acoustic disturbance it radiates in the field:

~p0Sðx; kÞ ¼ �

Z
SB

½n � rĜ � ikn � rsĜ� ~p0Sðy; kÞ e
�iks dS

�

Z
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½n � rĜ � ikn � rsĜ� ~p0I ðy; kÞ e
�iks dS

�

Z
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r0c½M̂ � rĜ þ ikð1� M̂ � rsÞĜ�~wðy; kÞ e�iks dS. (8)
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Hence, the procedure proposed in this work to determine the frequency-domain acoustic field generated by a
scattering, vibrating surface consists of the following three steps: first, the incident pressure is evaluated over
the surface, then the integral equation Eq. (7) is applied to determine the pressure perturbation over the
surface and finally the integral representation Eq. (8) is used to evaluate the acoustic disturbance in the field.
5. Numerical results

The numerical investigation is performed by applying a zeroth-order boundary element method for the
discretization of the boundary integral formulation. It consists of dividing the scattering and vibrating surface,
SB, into quadrilateral panels and assuming ~p0S, ~p

0
I and ~w to be piecewise constant. Then, the integral equation is

solved by requiring that the equation be satisfied at the center of each body element (collocation method, see
also Ref. [22]). Specifically, discretizing SB into M panels, SB

m, for a given value of k, at the center of the jth
element, xj, Eq. (7) yields

ð1� ljÞ ~p
S
j ðkÞ ¼

XM
m¼1

ðBjm þ ikCjmÞ ~p
S
mðkÞ

þ
XM
m¼1

ðlmdjm þ Bjm þ ikCjmÞ ~p
I
mðkÞ

þ
XM
m¼1

ð2Mn
mlmdjm þDjm þ ikFjmÞ~wmðkÞ, (9)

where ~pS
j ðkÞ ¼ ~p0

S
ðxj ; kÞ, while ~p

S
mðkÞ ¼ ~p0

S
ðxm; kÞ, ~p

I
mðkÞ ¼ ~p0

I
ðxm; kÞ, ~wmðkÞ ¼ ~wðxm; kÞ=r0c, Mn

m ¼MnðxmÞ and
lm ¼ lðxmÞ, with xm denoting the center of the mth panel. In addition, djm is the Kronecher delta function and
the coefficients are defined in the following way:

BjmðkÞ ¼ �e
�iksjm

Z
SB

m

n � rĜ dS,

CjmðkÞ ¼ e�iksjm

Z
SB

m

n � rsĜ dS,

DjmðkÞ ¼ �e
�iksjm

Z
SB

m

M̂ � rĜ dS,

FjmðkÞ ¼ �e
�iksjm

Z
SB

m

ð1� M̂ � rsÞĜ dS

with sjm denoting the time delay of the propagation of signals between the source point at xm and the observer
point at xj [a similar procedure is used for the numerical application of Eq. (8) to evaluate the acoustic
disturbance in the field]. Note that in the numerical evaluation of the above coefficients, the gradients of Ĝ and
s are first carried out analytically (see, for instance, Refs. [21–23]), and then the corresponding expressions
given in terms of source and observer positions are integrated assuming a hyperboloidal panel shape.

Collecting scattered pressures, incident pressures and elastic transpiration velocities at the M panels in the
vectors pS, pI and x, respectively, and collecting the coefficients in the matrices B;C;D and F, the solution of
Eq. (9) may be written in the following matrix form:

~pS ¼ EI ðkÞ ~pI þ EwðkÞ~x, (10)

where, for I denoting the unit matrix and denoting the diagonal matrix collecting the lm’s,

EI ðkÞ ¼ ½I� � BðkÞ � ikCðkÞ��1½ þ BðkÞ þ ikFðkÞ� (11)

is the matrix of the transfer functions between incident and scattered pressures at the panel centers, while

EwðkÞ ¼ ½I� � BðkÞ � ikCðkÞ��1½2M þ DðkÞ þ ikFðkÞ� (12)
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is the matrix of the transfer functions between elastic vibrations and pressure perturbations, with M denoting
the diagonal matrix collecting the normal Mach numbers, Mn

m’s.
In order to validate the acoustic formulation presented, first, results concerning the pressure field generated

by a plane wave impinging on a stationary rigid sphere are presented and compared with available analytical
solutions. The problem of the appearance of spurious frequencies is examined, along with acoustically small
sphere configurations. Then, the surface deformation effects on sound scattered are analyzed by assuming that
the sphere is a thin elastic shell subject to vibrations because of the impinging plane pressure wave. Also in this
case, the numerical predictions are validated by comparison with analytical solutions. Finally, the acoustic
analysis of scattering and vibrating surfaces is performed for bodies in uniform rectilinear motion, and the
results are compared with those given by a formulation based on the velocity potential.

5.1. Plane wave scattered by a stationary rigid sphere

The solution of the problem of a plane wave impinging on a stationary rigid sphere is obtained through the
application of the boundary integral equation in Eq. (7), with v ¼ 0, ~w ¼ 0 and ~p0I ðx; kÞ ¼ e�ikx (the wave is
assumed to propagate along the x-axis). In Appendix B it is shown that, in this case, the present boundary
integral formulation for the scattered pressure becomes perfectly equivalent to that discussed in Ref. [17] for
the same kind of problem. The formulation in Ref. [17] has been obtained starting from the FW-H equation
written only for the scattered pressure.

For a sphere of radius R, and an impinging wave with wave number such that kR ¼ 1, Fig. 1 depicts the
comparison between the analytical scattered pressure solution [32, p. 419, Eq. (8.2.2)] and those obtained
numerically using an increasing number of panels to discretize the sphere surface. The scattered signal is
evaluated on a circle of radius d=R ¼ 5 centered at the center of the sphere; Nm denotes the number of
elements of discretization along its meridians and Np denotes the number of elements of discretization along
the parallel circles (the x-axis coincides with the polar axis). The result is given in terms of the angular
dependence of the ratio j ~p0Sj=j ~p

0
I j, for the impinging wave traveling from left to right. The same will be done for

all of the following figures, unless different definitions are specifically indicated. For Nm ¼ Np ¼ 32 the
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Fig. 1. Angular dependence of scattering for a plane wave impinging on a stationary sphere. Convergence analysis and comparison with

the analytical solution for kR ¼ 1 and d=R ¼ 5. —, analytical solution; þ;Nm ¼ Np ¼ 8; �;Nm ¼ Np ¼ 16; n;Nm ¼ Np ¼ 24; �;Nm ¼

Np ¼ 32 (the incident wave moves from left to right).
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numerical result may be assumed to be the converged one, and perfectly matches the analytical solution.
However, the prediction appears to be quite accurate even for a coarse discretization (for instance, for
Nm ¼ Np ¼ 16 the numerical solution is fairly close to the analytical one). Further comparisons between
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Fig. 4. Directivity patterns of scattered pressure intensity for a plane wave impinging on a stationary sphere. Far-field solution for kR ¼ 1.

—, analytical solution; �, numerical solution (the incident wave moves from left to right).
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analytical solutions and converged numerical ones are given in Figs. 2 and 3, respectively, for kR ¼ 2 and
kR ¼ 4. In both cases the observers are placed at a distance d=R ¼ 5, and the agreement between the two
solutions is excellent. The numerical results also show a similar level of accuracy in predicting the far-field
scattered pressure. This is demonstrated in Figs. 4–6 where, respectively, for kR ¼ 1; kR ¼ 2 and kR ¼ 4, the
directivity patterns of the intensity of scattered pressure predicted by the formulation presented here are
compared with those obtained analytically [32].

5.1.1. Elimination of spurious frequencies

A drawback in using a boundary integral method in this type of analysis arises from the so-called ‘fictitious
eigenvalues’. These are non-physical resonances appearing in the numerical method that can completely
destroy the integral operator [3,4]. Spurious frequencies also appear in the formulation applied in this paper
and correspond to the frequencies at which the matrix to be inverted in the numerical solution of the integral
equation becomes singular [see Eqs. (11) and (12)]. In order to overcome this problem, here the CHIEF
regularization technique introduced in Ref. [9] has been applied. This technique consists of augmenting the set
of equations of the discrete form of the boundary-integral operator with homogeneous-condition equations at
some points within the volume bounded by the scattering surface, followed by the application of a least-square
technique for the computation of unknowns. For a stationary spherical scattering surface, the first fictitious
eigenvalue appears at kR ¼ p. For this wave number, at d=R ¼ 5, Fig. 7 shows the comparison between the
analytical solution, the non-regularized numerical one and the numerical one obtained through application of
the regularization technique. This result demonstrates that also for the formulation proposed here, the effects
of the spurious frequencies can be efficiently eliminated by application of the CHIEF approach.

5.1.2. Acoustically small spheres

Next, we examine the sound scattered by an acoustically small sphere. This case is characterized by the
condition kR51 or, in other words, by an impinging wave length much longer than the sphere radius. The
analytical solution of the scattered field is given in Ref. [33, p. 427, Eq. (9-1.8)] and has been used in
Refs. [17,18] to discuss the applicability of the FW-H equation in scattering problems. In Ref. [17] it is shown
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Fig. 5. Directivity patterns of scattered pressure intensity for a plane wave impinging on a stationary sphere. Far-field solution for kR ¼ 2.

—, analytical solution; �, numerical solution (the incident wave moves from left to right).
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Fig. 6. Directivity patterns of scattered pressure intensity for a plane wave impinging on a stationary sphere. Far-field solution for kR ¼ 4.

—, analytical solution; �, numerical solution (the incident wave moves from left to right).
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that the far-field solution given by a boundary integral formulation based on the FW-H equation coincides
with the analytical one. This is confirmed by Fig. 8 where, for kR ¼ 0:15 and d=R ¼ 300, the solution obtained
through the approach presented here is in excellent agreement with the analytical one. Fig. 9 depicts the
comparison between the solution from the present approach and the analytical one for kR ¼ 0:015 and
d=R ¼ 1:4. In contrast to what is claimed in Refs. [15,18], the near-field prediction from the FW-H equation
perfectly matches the analytical solution. However, it is apparent that the solution obtained in Ref. [18] from
the Curle equation is incorrect. Indeed, it would predict a non-zero scattered field even at k ¼ 0, while it is easy
to show that in this case the Curle equation reduces to a distribution of stationary, uniform dipoles and that
the signal emitted by such a distribution is equal to zero.

5.2. Plane wave scattered by a stationary elastic sphere

When a pressure wave impinges a thin elastic shell, the corresponding acoustic disturbance field is the result
of an aeroelastic phenomenon where incident and scattered pressure produce wall vibrations that, in turn,
modify the scattered pressure field. Here, this closed-loop aeroelastic mechanism is analyzed for a plane wave
impinging a spherical shell by coupling the sphere structural dynamics equations with the acoustics equations.

The discrete form of the equations of the shell structural dynamics is obtained by a modal approach. It is
based on the description of elastic deformations in terms of linear combinations of modes of vibration, as
given in Ref. [34]. For q denoting the vector of the corresponding Lagrangean variables, this procedure yields
the following form of the dynamics equations in the frequency domain:

½�k2Ms þ Ks� ~q ¼ ~f, (13)

where Ms and Ks are, respectively, mass and stiffness matrices which depend on the geometrical (thickness,
radius) and material (mass distribution, Young’s modulus) properties of the shell, while f is the vector of the
generalized loads that force the elastic degrees of freedom (projection of pressure onto the modes of vibration).
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From the knowledge of the modes used in the discretization of the structural dynamics equations, it is possible
to relate the elastic deformation velocity to the shell Lagrangean variables through the expression ~x ¼ EdðkÞ ~q,
where the deformation matrix, Ed , depends on the vibration frequency and the shape of modes. Using this
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deformation matrix in Eq. (10), the acoustic formulation yields

~pS ¼ EI ðkÞ ~pI þ EqðkÞ ~q, (14)

where Eq ¼ EwEd is the matrix that takes into account the influence of wall vibrations on the scattered pressure
over the surface. Then, defining the (projection) matrix, Ep, relating the shell surface pressure to the
corresponding generalized forces [i.e., such that ~f ¼ Epð ~pS þ ~pI Þ], the following acoustoelastic operator is
obtained by coupling Eq. (14) with Eq. (13):

~q ¼ ½�k2Ms þ Ks � EpEqðkÞ�
�1½Ep þ EpEI ðkÞ� ~pI . (15)

Eq. (15) yields the shell elastic deformation from the knowledge of the impinging pressure, and takes into
account both its direct action (through the matrix Ep) and also its indirect effects from the scattered pressure
(through the matrix EpEI ). Once the Lagrangean variables of the elastic deformation are known from Eq. (15),
the scattered pressure over the shell surface is obtained by Eq. (14) and then, the scattered pressure radiated in
the field is obtained through the discretized version of the integral representation in Eq. (8). Note that the
acoustoelastic procedure outlined above has a general validity, in that it may be applied to elastic scatterers of
arbitrary material and shape. Scatterers having different material and geometrical properties yield different
mass and stiffness matrices in Eq. (13), with the corresponding shape of modes affecting both matrix Ed and
matrix Ep.

For an aluminum spherical shell having thickness T ¼ ð3=1000ÞR, Fig. 10 depicts the distribution of the
amplitude of the radial elastic displacement, w, along a meridian circle induced by a unit impinging plane wave
with wave number kR ¼ 11:16 that coincides with the first natural frequency of vibration of the structure (note
that the impinging wave travels along the sphere polar axis and, therefore, the solution is constant along
parallel circles). Fig. 10 presents three numerical results obtained using 30 modes for the description of the
radial displacement: one is related to a surface discretization with Nm ¼ Np ¼ 40, one is related to a surface
discretization with Nm ¼ 40 and Np ¼ 72, whereas the third one is the result provided by an extrapolation
procedure applied to the numerical predictions obtained using different grids. The result from the finer grid is
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Fig. 10. Angular dependence of radial elastic displacement on the meridian circle of a sphere impinged by a plane wave with kR ¼ 11:16.
—, analytical solution; �;Nm ¼ 40; Np ¼ 40; n;Nm ¼ 40; Np ¼ 72; �, extrapolated numerical solution (the incident wave moves from left
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in good agreement with the analytical solution derived following the approach presented in Ref. [35], while the
extrapolated result perfectly matches it. The angular dependence of the scattered acoustic disturbance that
corresponds to the elastic deformation in Fig. 10 is shown in Fig. 11. It is evaluated at a distance d=R ¼ 5,
where the present numerical prediction using Nm ¼ 40 and Np ¼ 72 is in very good agreement with the
analytical solution obtained from Ref. [35]. This figure also demonstrates that the acoustic scattering of the
elastic sphere significantly differs from that produced by the undeformable body. Next, Fig. 12 depicts the
pressure scattered at d=R ¼ 5 by the elastic shell impinged by the plane wave with wave number kR ¼ 13:214
that corresponds to the second natural frequency of vibration of the shell. Also in this case the numerical
prediction obtained using Nm ¼ 40 and Np ¼ 72 is in very good agreement with the analytical solution.

5.3. Scattering and vibrating moving bodies

In the following, the effect of motion on the pressure perturbation field generated by scattering and
vibrating surfaces is examined.

First, consider the rigid wing scattering problem analyzed in Ref. [7]. It consists of a rectangular wing in
uniform rectilinear translation at zero angle of attack, with the incident pressure field generated by a co-
moving harmonic potential point source, located in its mid-span plane. The span of the wing is three times the
chord length, cw, while the cross sections have a symmetric biconvex parabolic shape with thickness ratio
tw=cw ¼ 0:1. For ðx0; x; y; zÞ denoting a wing-fixed coordinate system having chordwise x-axis, spanwise y-axis
and origin, x0, at the center of the mid-span cross section (see Fig. 13), Figs. 14 and 15 depict directivity
patterns of pressure scattered in the mid-span plane at radial distance d=cw ¼ 52:5 from x0 by the wing moving
in the negative x-axis direction at velocity v corresponding to Mach number M ¼ 0:5 (see Fig. 13). Specifically,
for wave number kcw ¼ 6, the results in Fig. 14 concern the source point located above the leading edge at
xLEs ¼ ð�5cw; 0; 5cwÞ, while those in Fig. 15 concern the source point located above the trailing edge at
xTEs ¼ ð5cw; 0; 5cwÞ (see Fig. 13). These figures compare the predictions given by the present formulation with
those obtained through a linear velocity-potential approach based on the integral formulation described in
Refs. [21,22], which is equivalent to that used in Ref. [7]. The results are presented in terms of the ratio
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between the scattered pressure and a reference pressure defined as pref ¼ 2dj ~p0I ðx0; kÞj=cw [7]. As expected, the
results obtained from the potential approach are in perfect agreement with those presented in Ref. [7], but
show significant discrepancies with respect to the predictions obtained through the formulation based on the
FW-H equation, especially in the region closer to the source (i.e., in front of the leading edge in Fig. 14 and in
front of the trailing edge in Fig. 15). This disagreement is quite unexpected and could be due to the different
effect that the elimination of the nonlinear terms has on the two solutions. In the present approach,
when subsonic configurations are examined, the quadrupole term disappears in sound radiation (observer far
from the body), but might become relevant when the integral formulation is used as an integral equation
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Fig. 14. Pressure scattered in mid-span plane by a wing in uniform rectilinear translation. Source point at xLEs ¼ ð�5cw; 0; 5cwÞ, kcw ¼ 6,
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Fig. 15. Pressure scattered in mid-span plane by a wing in uniform rectilinear translation. Source point at xTEs ¼ ð5cw; 0; 5cwÞ, kcw ¼ 6,
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(observer on the body), unless the Lighthill tensor is very small. Note that the perturbed Lighthill tensor would
give rise to linear perturbation terms which could become important as the body Mach number increases, in
that proportional to the local unperturbed flow velocity, u0, on the body surface. Indeed, the scattered fields
predicted by potential and FW-H formulations are quite similar as the Mach number decreases to M ¼ 0:1,
while they become almost identical in the steady-wing case, as shown in Figs. 16 and 17, respectively (in both
cases the potential point source is located at xLEs ). The importance of the nonlinear terms is also analyzed in
Fig. 18, which shows the steady pressure perturbation at distance d=cw ¼ 5 due to the uniform motion of the
wing at M ¼ 0:5. In this case, the predictions from the two formulations are in good agreement for tw=cwp0:1,
while significant discrepancies start arising for tw=cw ¼ 0:2, particularly at observer locations in front of the
wing regions where the highest values of fluid flow velocity occur and the Lighthill tensor is greater (for these
results, pref ¼ 0:5r0c2M2). Note that the pressure examined in Fig. 18 corresponds to the rigid-body motion
perturbation field, p0R, mentioned in Section 4, and these results confirm what was claimed at the beginning of
the same section.

Finally, a rigid vibrating sphere is examined. It is considered in uniform rectilinear translation, while
oscillating back and forth along the direction of motion, with kR ¼ 1. The results from the present
formulation are compared with those from a linearized velocity potential approach in terms of the ratio
j ~p0j=pref , where pref ¼ r0cU , with U denoting the magnitude of sphere oscillations. Figs. 19 and 20 depict the
acoustic disturbance distribution on a surface meridian circle parallel to the direction of motion, respectively,
for M ¼ 0:1 and 0:2, in addition to that for M ¼ 0. Similar to the wing scattering problem, the agreement
between the two formulations is excellent for M ¼ 0, but worsens as the Mach number increases, although
remaining quite similar up to M ¼ 0:2. The two approaches predict that, at both Mach numbers, the uniform
translation induces an increase of the pressure disturbance in the front region, while in the rear part the
pressure disturbance is slightly reduced at M ¼ 0:1 and slightly increased at M ¼ 0:2 (the sphere moves from
right to left). Note that these results differ from those presented in Ref. [36] where the same problem has been
analyzed using a formulation very close to that presented here. In particular, the results presented in Ref. [36]
seem to overestimate the pressure perturbation in the front region and to underestimate it in the rear part.
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Fig. 16. Pressure scattered in mid-span plane by a wing in uniform rectilinear translation. Source point at xLEs ¼ ð�5cw; 0; 5cwÞ, kcw ¼ 6,

d=cw ¼ 52:5, M ¼ 0:1. þ, potential solution; �, FW-H solution (the wing moves from right to left).
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Fig. 18. Pressure steady perturbation in mid-span plane due to a wing in uniform rectilinear translation at M ¼ 0:5. d=cw ¼ 5.þ, potential
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Fig. 17. Pressure scattered in mid-span plane by a stationary wing. Source point at xLEs ¼ ð�5cw; 0; 5cwÞ, kcw ¼ 6, d=cw ¼ 52:5. þ,
potential solution; �, FW-H solution.
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Fig. 19. Angular dependence of pressure perturbation on the surface of a rigid sphere in uniform rectilinear translation, oscillating back

and forth along the direction of motion. kR ¼ 1. þ, potential solution, M ¼ 0; 	, FW-H solution, M ¼ 0; �, potential solution, M ¼ 0:1;
�, FW-H solution, M ¼ 0:1 (the sphere moves from right to left).
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Fig. 20. Angular dependence of pressure perturbation on the surface of a rigid sphere in uniform rectilinear translation, oscillating back

and forth along the direction of motion. kR ¼ 1. þ, potential solution, M ¼ 0; 	, FW-H solution, M ¼ 0; �, potential solution, M ¼ 0:2;
�, FW-H solution, M ¼ 0:2 (the sphere moves from right to left).
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6. Conclusions

The formulation presented in this work yields a unified approach for the prediction of surface pressure
perturbations and sound radiation generated by pressure waves impinging moving, elastic bodies. It can also
be conveniently applied to those aeronautical configurations where one major source of noise generated by
aerodynamics may be identified. Indeed, if such a source of noise may be assumed to be aerodynamically
independent from the other bodies, this methodology yields the overall pressure perturbation with inclusion of
interactional acoustic effects, requiring only its aerodynamic solution as an input. In particular, the scattering
effects are determined from the knowledge of the impinging pressure, and this is a considerable simplification
with respect to those widely used scattering formulations where the normal derivative of the incident pressure
over the scatterer surface is needed. Although valid for bodies with a rigid contour, the proposed formulation
includes elastic vibration as a porosity effect, and thus can be applied to vibroacoustic/acoustoelastic
problems. The numerical investigation has demonstrated that it gives very accurate predictions of near- and
far-field pressure scattered by stationary rigid spheres, both for low-frequency and for mid-frequency incident
waves. Very accurate numerical predictions have also been obtained for scattering problems concerning
stationary elastic surfaces, both in terms of the resulting elastic deformations and in terms of radiated sound.
The problem of the presence of spurious frequency in the integral operator has been discussed and solved by
the widely used CHIEF regularization technique. Finally, the present formulation has been applied to
scattering and vibrating surfaces in uniform motion. The results have been compared with those given by a
linearized velocity potential formulation showing that discrepancies grow together with the body velocity
number. This might be due to the fact that the nonlinear terms that have not been included could become non
negligible as the velocity increases, yielding a quantitative different influence in the two formulations. In
particular, in the present approach the quadrupole term might become relevant when the observer is on the
body, unless the Lighthill tensor is very small. This is an open issue which deserves further research.
Appendix A. Integral contribution from kernel singularity

When the integral equation in Eq. (5) is derived from Eq. (2) by letting the observer position, x, approach
the surface, SB, singularities of kernel functions Ĝ and rĜ arise. In the integrals with kernel Ĝ the singularity
is removed by combination with the differential of the surface area and they are integrable in the ordinary
sense. On the contrary, the integrals with kernel rĜ are of improper singular type and their evaluation may be
obtained performing the limit x! SB. In the following, it will be shown that this limit is finite, yielding the
regularized form of the singular integral as the sum of a so-called free term evaluated at the observer position
[37] and a convergent improper integral.

Consider an integral term of the type

Iðx; tÞ ¼

Z
S

½z � rĜ�ret dS

in which, for x! x0 2 S, the kernel function rĜ shows a singularity at y ¼ x0. The evaluation of the singular
contribution may be performed in the limit x! S, and for this purpose it is convenient to decompose the
domain of integration in the following way:

Iðx0; tÞ ¼ Isðx0; tÞ þ Irðx0; tÞ

¼ lim
x!x0

Z
S�

½z � rĜ�ret dS þ lim
x!x0

Z
SnS�

½z � rĜ�ret dS, (16)

where S� is an arbitrarily shaped small portion of surface of characteristic length � containing x0, such that its
boundary tends to collapse onto it for �! 0. The second integral, Ir, denotes the regular contribution from
the portion of surface that does not contain singularities. The evaluation of the limit of the first integral, Is, is
the aim of this appendix.

Let us introduce a local orthogonal coordinate system, ðx0; s; l; nÞ, co-moving with the surface, with the
origin at x0, n normal to the surface, and the plane ðs; nÞ containing the vector, v, of the local velocity of the
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surface (see Fig. 21). Denoting with zs; zl ; zn the components of the vector z in this coordinate system,
assuming that jx� x0j ¼ a�m with a representing an arbitrary constant and m41, for �! 0 the integral Is

becomes

Isðx0; tÞ ¼ zsðx0; tÞ lim
�!0

Z
S�

qĜ

qs
dS þ zlðx0; tÞ lim

�!0

Z
S�

qĜ

ql
dS þ znðx0; tÞ lim

�!0

Z
S�

qĜ

qn
dS

in that

lim
�!0

Z
S�

½½zðy; tÞ � zðx0; tÞ� � rĜ�ret dS ¼ 0

under the hypothesis that the function z 2 C0;aðS�Þ, i.e., is a bounded uniformly Hölder continuous function
for y 2 S�, with exponent 0oap1 [37,38].

Next, rewriting the normal derivative of Ĝ as

qĜ

qn
¼

qĜ

qn
�M � nM � rĜ þM � nM � rĜ ¼

qĜ

q �n
þM2

n

qĜ

qn
þMnMs

qĜ

qs

with M ¼ vðx0; tÞ=c, Mn ¼ vnðx0; tÞ=c, Ms ¼ vsðx0; tÞ=c and qð. . .Þ=q �n ¼ qð. . .Þ=qn�M � nM � rð. . .Þ, yields the
following expression for the singular integral:

Isðx0; tÞ ¼ ½zsðx0; tÞ þ znðx0; tÞMnMs=b
2
n� lim

�!0

Z
S�

qĜ

qs
dS

þ zlðx0; tÞ lim
�!0

Z
S�

qĜ

ql
dS þ ½znðx0; tÞ=b

2
n� lim

�!0

Z
S�

qĜ

q �n
dS, (17)

where b2n ¼ 1�M2
n.

In Eq. (17) the first two integrals disappear, for �! 0, if S� is symmetric with respect to x0. To show this, let
us choose, arbitrarily but legitimately, S� as a square with edge length equal to 2� and also introduce a local
coordinate system, ðx0; x; Z; zÞ, co-moving with the surface. The origin of the coordinate system is located at
the center of S�, the x-axis is aligned with the local surface velocity, v [and thus lies in the plane ðs; nÞ], while the
Z-axis coincides with the l-axis (see Fig. 21). For �! 0 the source–observer time delay tends to zero and
in the present analysis it is possible to approximate the motion of S� as a uniform translation with velocity
equal to that of x0 at the observer time. In this case, observing that for a source in uniform translation at a
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given time, t, one has [22,32]

Ĝðx; gÞ ¼
1

4p
�1

rð1�MrÞ

� �
ret

¼
�1

4prb
,

where rbðx; gÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½xðxÞ � x�2 þ b2f½ZðxÞ � Z�2 þ ½zðxÞ � z�2g

q
, with b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2
p

, it is easy to recognize that,
for dS ¼ dsdl

lim
�!0

Z
S�

qĜ

ql
dS ¼ lim

�!0

Z �

��
½Ĝðx; gðs; �ÞÞ � Ĝðx; gðs;��ÞÞ�ds ¼ 0 (18)

and

lim
�!0

Z
S�

qĜ

qs
dS ¼ lim

�!0

Z �

��
½Ĝðx; gð�; lÞÞ � Ĝðx; gð��; lÞÞ� dl ¼ 0. (19)

Indeed, rbðx0; gÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ b2½Z2 þ z2�

q
; thus, Ĝðx0; gðs; lÞÞ ¼ Ĝðx0; gðs;�lÞÞ and Ĝðx0; gðs; lÞÞ ¼ Ĝðx0; gð�s; lÞÞ for

any s 2 ½��; ��; l 2 ½��; �� (see Fig. 21).
Finally, for the evaluation of the third integral in Eq. (17) the Prandtl–Glauert transformation of

coordinates

x̂ ¼ x=b; Ẑ ¼ Z; ẑ ¼ z

is conveniently applied. Noting that the Prandtl–Glauert space coordinates yield

rbðx; gÞ ¼ br̂ðx; gÞ,

where

r̂ðx; gÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x̂ðxÞ � x̂ðgÞ�2 þ ½ẐðxÞ � ẐðgÞ�2 þ ½ẑðxÞ � ẑðgÞ�2

q
is the source–observer distance in the Prandtl–Glauert space, it is possible to show that the third integral in
Eq. (17) may be recast in the following way (see Ref. [22]):Z

S�

qĜ

q �n
dS ¼

1

4p

Z
Ŝ�

q
qn̂

�1

r̂

� �
dŜ (20)

with Ŝ� and qð. . .Þ=qn̂ denoting the image of S� and the normal derivative in the Prandtl–Glauert space,
respectively. The integral on the right-hand side of the equation above coincides with a double-layer potential
with unit density. For our purposes, it may conveniently be interpreted in terms of solid angles. Indeed, with
the normal derivative performed with respect to the source space variable, note that

q
qn̂

�1

r̂

� �
dŜ ¼ �

n̂ � r̂

r̂3
dŜ ¼ �sgnðn̂ � r̂Þ

1

r̂2
cos adŜ ¼ �sgnðn̂ � r̂Þ dO,

where a is the angle between the normal direction and the source–observer direction in the Prandtl–Glauert
space, sgnðn̂ � r̂Þ denotes the sign of the scalar product between r̂ and n̂, while dO ¼ dŜ cos a=r̂2 is the solid
angle element, i.e., the surface element that dŜ projects upon the unit sphere centered at the point x̂ that
denotes the image of the observer point in the Prandtl–Glauert space (see Fig. 22, where x̂0 represents the
image of x0 in the Prandtl–Glauert space). Hence, the integration of a double-layer potential with unit density
over a closed surface is equal to zero for x outside it, whereas it is equal to one for x inside it (and outward unit
normal vector). In our case, for x approaching x0 from outside (i.e., for n̂ � r̂40), and assuming a regular
surface in its neighborhood, one has

lim
�!0

1

4p

Z
Ŝ�

q
qn̂

�1

r̂

� �
dŜ ¼ �

1

2
(21)

in that, for �! 0, the solid angle through which Ŝ� is seen by the observer is equal to 2p. Note that this result
is not dependent on the shape of the surface S� considered, as expected from the integration of a weakly
singular kernel like the double-layer potential [38] (the same result may also be obtained using a mathematical
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Fig. 22. Solid angle through which dŜ is seen by an observer at x̂.
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rather than a geometrical approach, as shown in Ref. [39]). Combining Eqs. (17)–(21) yields

Isðx0; tÞ ¼ �
znðx0; tÞ

2b2n

that, recalling Eq. (16), provides the following final expression for the singular integral examined:

Iðx0; tÞ ¼ �
znðx0; tÞ

2b2n
þ lim

�!0

Z
SnS�

½z � rĜ�ret dS, (22)

where the first term is the free term contribution to the integral emerging from the singularity arising as
x! x0. In order to interpret the second integral term it is convenient to recast the integrand z � rĜ in the
following form:

z � rĜ ¼ zs þ zn

MnMs

b2n

 !
qĜ

qs
þ zl

qĜ

ql
þ

zn

b2n

qĜ

q �n

which extends to the whole surface S, the expression in Eq. (17) used on S�. As already observed above, the
last term is weakly singular in x0 and thus in Eq. (22) it yields a convergent improper integral; the contribution
from the tangential derivatives of Ĝ is a semiconvergent integral that depends on the shape of S�, and
corresponds to their Cauchy principal value integral when S� is symmetric with respect to x0, as in our
analysis.

Following this result, Eq. (5) has been determined observing that for the problem under examination
z ¼ �r0v � nv� p0In� p0Bn� ru� � nuþ. Note that in all the integral equations mentioned in this work, the
integral terms containing a singular kernel have been developed as described in this appendix. Thus, although
no symbolic reference to this fact is introduced, the resulting surface integrals have to be considered applied on
SnS� in the limit as �! 0, i.e., with kernel singularity removed.
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Appendix B. Comparison with an alternative approach

Let us introduce a stationary virtual closed surface, S, within a fluid region where an arbitrary unsteady
pressure field, p0, is present without being perturbed by any physical surface. Considering a point x in the field
and neglecting second-order terms, Eq. (4) yields

0 ¼

Z
S

½r_u � nĜ�ret dS þ

Z
S

½p0n � rĜ � _p0n � ryĜ�ret dS, (23)

where u is the fluid velocity related to p0 through the momentum equation. Eq. (23) is the compatibility
condition on a closed surface between the pressure field and the corresponding velocity field, in an unbounded
fluid medium. Then, if p0 � p0I , u � uI and the shape of S coincides with that of SB, the combination of Eq.
(23) with Eq. (4) written for an impermeable surface yields the following alternative boundary integral
representation for the pressure scattered by a stationary surface:

4pp0Sðx; tÞ ¼ �

Z
SB

r_uI � n

r

� �
ret

dS þ

Z
SB

p0S
n � r

r3
þ _p0S

n � r

cr2

h i
ret

dS (24)

(note that, for the stationary surface, Ĝ ¼ �1=4pr). Observing that the linearized momentum equation gives
r_uI � n ¼ �qp0I=qn, and using this expression in the equation above, one obtains that Eq. (24) coincides with
Eq. (3) in Ref. [17]. This demonstrates the equivalence between the formulation presented here and that
presented in Ref. [17] (note that in Eq. (3) of Ref. [17], cos a ¼ n � r=r). The difference between the two
formulations is in the way in which the incident pressure forces the scattered one. In Ref. [17] this occurs
through a term depending on its normal derivative on the scattering surface (similar to the formulations based
on the Kirchhoff approach), whereas here the scattered pressure is forced by the distribution of the incident
pressure and its time derivative on the same surface. Eq. (23) also shows that the term forcing the scattered
pressure in the formulation examined here is closely related to the forcing term in the scattering formulations
based on the velocity potential, which is given by the velocity flow related to the incident perturbation field.
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